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Abstract 
 
The paper presents a novel experimental method for the determination of the impact load in the thick plate based on 

the theoretical Green’s function and the measured waveforms by the sensors arrayed on the surface on the plate. This 
method requires the location of the impact load. For the accurate estimation of location of impact source in a plate, the 
arriving time difference between sensors and the propagation velocity of acoustic waveform are necessary. Their meas-
urements are difficult since the acoustic waveforms are dispersive with multi modes in the plate. The time frequency 
analysis for the acoustic waveform gives the information about the time difference for multi mode dispersive waveform. 
For the estimation of location of impact source in a plate, the information on the group velocity of the A0 flexible mode 
is important. In the paper, various time frequency methods are introduced and their methods are compared with simu-
lated signals. The combined higher order time frequency (CHOTF) is employed for dispersive information for the A0 
mode flexible mode. The location of impact source and the magnitude of impact load are well estimated based on the 
theoretical Green’s function and the CHOTF for the acoustic waveforms measured by three sensors arrayed on the 
plate. 
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1. Introduction 

The impact load identification problem in the plate 
has been investigated extensively [1-5]. Michael and 
Pao [1] developed a method that determined a dy-
namic force using wave motion measurement. In this 
case, the location of the impact load was known. In 
many impact load problems, however, the location of 
impact load is generally not known. Therefore, in 
order to identify the location of the impact load, vari-
ous methods are investigated. In the acoustic emission 
technique, the standard method of planar source loca-
tion is to place three or more transducers on the sur-
face of an elastic plate and triangulate the source posi-

tion by using the differences in arriving times of the 
acoustic wave at sensors [6-8]. The arriving times are 
related to the propagation velocity of the acoustic 
wave. This propagation velocity is therefore impor-
tant in the estimation of source location. If not taken 
into account in the measurement of velocity of acous-
tic wave, highly dispersive propagation can lead to 
large errors in source location [6]. In the source loca-
tion problem of impact load, the accurate estimation 
of propagation velocity of the A0 flexural mode in 
plate is difficult since its energy among Lamb modes 
is dominant [9, 10]. Various techniques for the meas-
urement of velocities of flexural modes have been 
published in the many research papers [6, 11-15]. 
Prosser surveys the disadvantages of these techniques 
well [11]. Recently, after the time-scale method and 
time-frequency method were employed for the analy-
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sis of the Lamb modes, the group velocity of flexural 
modes was measured with ease and accuracy in com-
parison with other convention techniques. Wavelet 
transform [16], which is representative of the time-
scale method, is used in the measurement of the group 
velocity of flexural mode in a beam [7]. This group 
velocity is used in detection of the location of impact 
load. This technique is extended to the detection of 
the location of impact load in a plate [8]. However, it 
is known that wavelet transform has bad time-
frequency resolution because of the uncertainty prin-
ciple. In wavelet transform, it is difficult to estimate 
the group velocity at a narrow frequency band be-
cause the frequency step increases with logarithmic 
scale [17-19]. In this case, the bilinear time-frequency 
method is the proper method for estimating the group 
velocity [11, 20, 21]. Prosser employed the pseudo 
Wigner-Ville distribution (PWVD) method to meas-
ure the group velocities of the Lamb modes in the 
plate [11]. Dispersion measurement from the PWVD 
can offer a number of advantages in comparison to 
more traditional measurement techniques. PWVD is, 
however, sensitive to the background noise because 
the PWVD uses the second order statistic of acoustic 
wave data measured in the sensor. Combined higher 
order time-frequency (CHOTF) method [23, 24] has a 
strong advantage in detecting the signal with lower 
signal to noise ratio. In this study, CHOTF is em-
ployed to determine the group velocity of flexural 
mode and to calculate the arriving times of dispersive 
waves at the sensors installed on the elastic plate to 
detect the location of impact load. After detecting the 
location of impact load, theoretical solution to impact 
load has been used for the determination of impact 
energy. Gaul and Hurlebaus adapt the classic plate 
theory (CPT) as a theoretical solution to an impact 
load after identification of the location of impact load 
using wavelet transforms [2]. In the determination of 
the impact energy, there are different approach meth-
ods [3, 4]. These methods are based on a structure 
model to predict the response to impact load. These 
models characterize the relation between the input 
and the sensor output. The response comparator com-
pares the measured sensor signal with the predicted 
model. Sensors are arrayed on the plate. One method 
uses the strain gauges as sensors [3]. The other uses 
the piezoelectric film as sensors [4]. These methods 
use the classic plate theory as a predictive model for 
predicting the response to an impact load in the struc-
ture model. If the thickness of the elastic plate is small,  

 
 
Fig. 1. Geometry of the concentrated load problem. 

 
a sufficiently accurate response can often be obtained 
through class plastic theory. However, a full elasto-
dynamic theory (it is called the exact solution) needs 
to be employed in the solution of the problem in order 
to obtain meaningful results or the approximate SDPT, 
where the transverse shear and rotary inertia are re-
tained in modeling the dynamic deformations cross 
the thickness of plate [25, 26]. In general, because of 
being computationally intensive, the approximate 
SDPT, instead of the exact solution, can be used [27]. 
In this study, when an impact load excites the plate 
origin, throughout the measurement of the an acoustic 
wave at the arbitrary response point of the plate as 
shown in Fig. 1 and the theoretical Green’s function 
between the impact position and the response, the 
ability to determine the location and the time history 
of impact load is demonstrated.  
 

2. Comparison of time frequency methods  

In the field of signal processing, Fourier transform 
(FT) is one of the most useful tools for the spectrum 
analysis of a wave signal obtained from a structure. 
However, the FT has been used for stationary signals. 
The wave propagation of the solid is usually non-
stationary signals since the speed of a solid wave 
depends on the frequency. For the analysis of non-
stationary signals, the short time Fourier transform 
was developed by Koeng in 1948 [28]. The STFT 
cannot have good time and frequency resolution si-
multaneously because of the principle of uncertainty 
[29]. Wigner-Ville distribution [30] is a good solution 
to get better time and frequency resolution. In this 
distribution, unwanted cross-terms are generated. It is 
not a physical term. In order to control the time and 
frequency resolution depending on frequency and to 
avoid the occurrence of cross terms, the wavelet 
transform is employed. The time and frequency reso-
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lution is controlled in the wavelet transform [16] with 
some rule. At low frequency, the time resolution is 
good and at high frequency, the frequency resolution 
becomes good. The wave transform is, however, af-
fected by the principle of uncertainty. Therefore, 
these time-frequency methods each have their advan-
tages and disadvantages. In order to enhance the sig-
nal embedded in the background noise, the higher 
order time frequency method [23] was developed and 
its origin is based on Wigner distribution. In this ses-
sion, STFT, Wigner-Ville distribution, wavelet trans-
forms and the higher order time frequency methods 
are discussed and their characteristics are explained 
with simulated waveforms and the dispersive wave 
measured on a simple beam.  

 
2.1 Short time fourier transform 

The STFT for signal s (t) is defined by, 

* 2( , ) ( ) ( ) j fS t f h t s e dπ ττ τ τ
∞

−

−∞

= −∫   (1) 

where h (t) is window function. Depending on the 
size of this moving window, the STFT S (t, f) has 
different time and frequency resolution. However, if 
the size of the moving window is fixed, the time and 
frequency resolution is not controlled in the time-
frequency domain. It should satisfy the uncertainty 
principle [30].  

 
2.2 Wavelet transform 

Wavelet transform has been recently used in many 
fields of engineering work because of its diverse ex-
pression. The continuous wavelet transform is defined 
by 
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The function Ψ (t) is the mother wavelet given by 
2
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This mother wavelet is scaled by η in the frequency 
domain and shifted by b in the time domain. The 
window size of the wavelet transform is controlled by 
scaling factor η. f0 is the fundamental frequency of  

the mother wavelet and σ is arbitrary constant. f0 con-
trols the frequency range for the analysis of data. The 
constant σ controls the window size with η. Since the 
window size is controlled by constant σ and η, fre-
quency resolution and time resolution are changed 
depending on frequency. It should, however, satisfy 
the uncertainty principle.  

 
2.3 Wigner-ville distribution  

The bilinear distributions, commonly referred to as 
Cohen’s class, can all be derived from a single distri-
bution, the Wigner-Ville distribution (WVD). The 
WVD can be defined in two, equivalent fashions: 

* 2

2

( , ) ( / 2) ( / 2)

( / 2) ( / 2)

if

if

W t f s t s t e d

S f S f e d

π τ

π ν

τ τ τ

ν ν ν

−

∗ −

= − +

= − +

∫
∫

  (4) 

where s (t) is the signal being analyzed, S (f) is its 
Fourier transform and * denotes complex conjugation. 
The WVD has many desirable properties including 
the fact that it can yield good time frequency resolu-
tion. However, its direct application is limited by the 
fact that it generates cross-terms. Specifically, the 
WVD of a signal s1 (t) + s2 (t) contains components 
due solely to s1 (t) and s2 (t), referred to as the auto-
terms, along with an additional interference (cross-) 
term arising because of the interaction of s1 (t) and s2 
(t). They are distinguished from the auto-terms (the 
components of the distribution which directly relate to 
input components) by virtue of the fact that the cross-
terms are oscillatory, whereas the auto-terms are not. 
Hence, applying a two dimensional low pass filter to 
the WVD reduces cross-terms, relative to the auto-
terms. The general form of a bilinear time-frequency 
representation is  

( , ) (  ,  ) (  ,  )   C t f W t f f t dt df= Φ∫∫   (5) 

where C (t, f) is a general bilinear distribution and Φ 
(t, f) is a two-dimensional low pass filter. Different 
choices for the function Φ (t, f) result in the plethora 
of bilinear distributions available.  

 
2.4 Higher order time frequency method 

The bilinear methods above decompose a signal’s 
energy, i.e., 2( )s t dt∫ , into a function of time and 
frequency. One extension to such analysis techniques 
is to consider signal decompositions that relate to 
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higher moments. One decomposes a signal’s higher 
moment, i.e., ( )ks t dt∫ , where k is some integer 
greater than two. The auto-terms appear in “unex-
pected” locations in the time-frequency plane. For 
this reason, it is common to restrict one’s attention to 
even-order distributions. This paper will concentrate 
on fourth-order distributions, being next even order 
greater than two. The WVD can be extended to the 
Wigner fourth order moment spectra (WFOMS), 
[31]:  
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where τ = (τ1+τ2+τ3) / 4. Note that this distribution is 
a function of one time variable and three frequency 
variables and as such is referred to as a multi-
frequency representation. The dual form of this distri-
bution is the multi-time distribution [32] 
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where ν = (ν1+ν2+ν3) / 4. Unlike Eq. (4), Eq. (6) and 
Eq. (7) define two different distributions, with the 
roles of time and frequency reversed. Recall that the 
WVD has complete symmetry in the roles of time and 
frequency (see Eq. (4)). In Eq. (6) and (7) there is no 
such symmetry. Each of these distributions is a func-
tion of four independent variables. The higher order 
character of these distributions means that the number 
of cross-terms generated increases dramatically. To 
mitigate this, and to ease the problems associated with 
visualization of functions of four variables, it is com-
mon to consider subsets (slices) of these functions. 
For the multi-frequency distribution one selects the 
slice f = f1 = - f2 = f3 and for the multi-time distribu-
tion one sets t = t1 = -t2 = t3. Within these subsets, the 
number of cross-terms generated falls dramatically. 
However, a new problem is encountered. When using 
the WVD the cross-terms have an oscillatory nature; 
this means that a smoothing filter can be used to at-
tenuate them. It can be shown that, under certain cir-
cumstances, the (sliced) higher order distributions 
generate cross-terms, which do not oscillate. These 
cross-terms are potentially problematic since they 
cannot be attenuated by the use of smoothing. Such 
cross-terms require an alternative approach to their 
reduction. The sliced forms of the multi-frequency 

and multi-time distributions can be respectively ex-
pressed as 

2 * 2 2( , ) ( / 4) ( / 4) i t
fSW t f S f S f e dπ νν ν ν−= − +∫   (8) 

2 * 2 2( , ) ( / 4) ( / 4) if
tSW t f s t s t e dπ ττ τ τ−= − +∫   (9) 

These forms of the representations have been cho-
sen since they most clearly illustrate the connections 
with the WVD [31, 32]. The above signal representa-
tions can be thought of as decompositions of a signal 
fourth moment, since 

4( , ) ( )tSW t f dtdf s t dt=∫∫ ∫  and  

4( , ) ( )fSW t f dtdf S f df=∫∫ ∫   (10) 

For the fourth moment there is no equivalent of 
Parseval’s theorem, i.e.,  

4 4( ) ( )S f df s t dt≠∫ ∫   (11) 

This highlights that Eq. (8) and Eq. (9) are different 
representations; they are decompositions of different 
quantities. From Eq. (6) and Eq. (7), one can obtain 
an intuitive indication of which classes of signals the 
methods are most suited for. Consider the SWf (t, f) of 
a narrow band signal, so that its contribution is cen-
tered on some peak in the Fourier transform, then the 
operation of squaring the Fourier transform, seen in 
Eq. (8), will serve to accentuate this peak. Similarly, 
the operations involved in the SWt (t, f) serve to accen-
tuate short duration transient signals. The former dis-
tribution is referred to as the sliced Wigner fourth 
order moment spectra (SWFOMS) [23]. The latter 
distribution was initially proposed as one of a more 
general class of distributions referred to as the L-
Wigner distributions (LWD) [33]; to reflect this the 
SWt ( t, f) will be referred to as the L-Wigner distribu-
tion (LWD). An alternative approach to cross-term 
reduction is required for the higher order distributions. 
One method proposed for achieving this is based on 
the observation that  

1( , ) ( , ) ( , )
2fSW t f W f t W f t dτ τ τ= − +∫   (12a) 

1( , ) ( , ) ( , )
2tSW t f W t f W t f dν ν ν= − +∫   (12b) 

That is, the SWFOMS can be obtained by convolv-
ing, with respect to time, the second order WVD 
whilst the LWD can be obtained by convolving, with 
respect to frequency. A natural extension to Eq. (12) 
is to say that generalized versions of the SWFOMS 
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and the LWD are given by  

21( , ) ( ) ( , ) ( , )
2fSSW t f h C f t C f t dτ τ τ τ= − +∫   (13a) 

21( , ) ( ) ( , ) ( , )
2tSSW t f H C t f C t f dν ν ν ν= − +∫   (13b) 

where C (t, f) is any bilinear distribution as described 
by Eq. (5), and h (t) and H (f) are windowing func-
tions, respectively. If the bilinear distribution has been 
suitably smoothed, so that its cross-terms have been 
removed, then prudent choice of the weighting func-
tion ensures that no additional cross-terms are gener-
ated and that the SWFOMS and LWD are essentially 
cross-term free [34, 35]. In reference [34, 35] one is 
advised to select h (t) and H (f) as a rectangular win-
dow, the width (in time and frequency) should be no 
more than the minimum separation between two 
components. Evidently, the cross-term reduction is 

highly effective even for the non-oscillating compo-
nents. According to previous work [36], the SWOFM 
is not affected by non-oscillated cross-terms along the 
frequency axis but along the time axis. The LWD is 
not affected by non-oscillated cross-terms along the 
time axis. Therefore, when the frequency separation 
is important, SWOFM is a good solution to represent 
a non-stationary signal, and when the time separation 
is important, the LWD is a good selection to present a 
non-stationary signal. For dispersive Lamb mode 
waves, at very low frequency, SWOFM is better than 
LWD, but at high frequency LWD is better than 
SWOFM. For representation for A0 mode flexible 
mode, at first step, SWOFM is employed and at next 
step LWD is used. Therefore, the high order time 
frequency presentation of these two-steps defines the 
combined higher order time-frequency (CHOTF) [22]. 
At the first step, the selection of time window h (t) is 

 

 

 
 
                                    (a)                                         (b)                                        (c)                                         (d) 
 
Fig. 2. Comparison of the time-frequency methods for the simulated signals: figures of the first row are the image analysis for 
two chirp signals without noise; figures of the second row are the image analysis for two chirp signals data with noise; figures of 
the third row are the image analysis for frequency modulated signal; figures of the bottom row are the image analysis for the 
dispersive signal measured in the beam, (a) STTF (b) WT(c) PWD (d) CHOTF.
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important and at the next step, the selection of fre-
quency H (f) is important.  
 

3. Numerical results  

Fig. 2 explains the characteristics of various time-
frequency methods with image analysis in time-
frequency domain for three simulated signals and one 
measured. The figures in the first row are the image 
analysis for the two simulated chirp signals without 
background noise. The figures in the second row are 
the image analysis for the two simulated chirp signals 
with noise. The figures in the third row are the image 
analysis for the simulated frequency-modulation sig-
nal, which is x=exp (j2πf) and f = b cos (at)+ct, 
where a =0.05, b=0.4, c =0.05. The figures in the 
bottom row are the image analysis for a dispersive 
wave measured on the beam. Fig. 2(a), (b), (c) and (d) 
show the STFT, WT, PWD, and CHOFT for each 
signal, respectively. Fig. 2(a) shows that STFT has 
bad time and frequency presentations since from Fig. 
2(b), WT has bad frequency discrimination at high 
frequency and has bad time discrimination at low 
frequency. In Fig. 2(c), we find the PWD has good 
time and frequency presentation. However, it has still 
less time frequency presentation than CHOFT, as 
shown in Fig. 2(d). Especially, from the analysis of a 
dispersive wave, it is found that the CHOFT is the 
best method for the identification of the wave propa-
gation. Throughout this paper, the CHOFT is used for 
the image analysis of the propagation wave measured 
in the plate. Fig. 3 shows image analysis for two 

simulated Green’s functions obtained by using exact 
theory and approximated SDPT [38]. For these image 
analyses, the CHOFT is employed for the two simu-
lated signals. The time-frequency presentation for A0 
flexible mode is clear. However, the CHOFT for a 
simulated Green’s function using exact solution also 
shows the time-frequency presentation for the other 
flexible mode A1. The time-frequency presentation 
for the symmetric mode S0 and S1 is not clear since 
the impact is vertical direction as shown in Fig. 1. In 
this paper, for the estimation of impact load in the 
plate, the measurement of the group velocity for the 
A0 flexible mode is required and the group velocity 
of this mode is associated with the peak line of image 
analysis in the time-frequency domain.  
 

4. Location of impact load 

For the experiment, an aluminum plate was used, 
with dimensions 1200mm × 1200mm and 10mm. The 
impact load was excited by the impact hammer with 
aluminum tip. The details of experiment are discussed 
in reference [38]. Fig. 4 shows the comparison be-
tween the simulated waveform using SDPT and 
measured waveform. These waveforms are measured 
at the position S0 = 447mm, S1 = 447mm, and S2 = 
200mm from impact position. The waveforms in the 
top line are non-filtered waves and the waveforms in 
the bottom are filtered waveforms. The measured 
waveforms show reflected wave whilst the simulated 
waveform has only direct waves in infinite plate. The 
waveforms measured at sensor S0 and sensor S1 are 

 

     
 
                                                    (a)                                                                                                   (b) 
 
Fig. 3 CHOTF analysis for Green’ function (a) Simulated waveform using approximate SDPT (b) Simulated waveform using 
Exact solution. 
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affected earlier by reflected wave than waveform 
measured at sensor S2 since they are far distant from 
the impact point and nearest to the edge of the plate. 
In the direct wave region, in order to remove the ef-
fect of the reflection wave, the band pass filter is used. 
After filtering, in the region of direct wave, the simu-
lated waveforms are well corresponding with the 
measured waveforms. The spectrum of impact load 
ˆ ( )f ω used for the impact is shown in Fig. 5. In this 

paper, our purpose is to determine this force with 
waveforms measured by only three sensors and with 
the Green’s function theoretically obtained by using 
the exact solution and the approximated SDPT. This 
is processed after determining the location of the im-
pact load. For isotropic materials, the location of the 
impact load from the time difference from a pair of 
sensors can be shown to lie on a hyperbola with the 
two sensors as foci. For planar location, to uniquely 
locate the source, three sensors must be used. Tobias 
[6, 37], approached the problem as three intersecting 
circles, each centered at a sensor, with their radii de-
termined by the time of propagation of the wave from 
the source to the respective sensor. By solving three 
resulting equations simultaneously he was able to find 
a closed form solution at a reference origin, and the 
angle, θ, from a reference axis. For three sensors, S0, 
S1 and S2, located at (0,0), (x1,y1) and (x2,y2), respec-
tively, these equations are 

1

1 1 1

12

2 2 2

2( cos sin )

2( cos sin )

Ar
x y

A
x y

θ θ δ

θ θ δ

=
+ +

=
+ +

 (14) 

 
 
Fig. 5. Frequency spectrum of impact force measured 
throughout force transducer. 
 
where  

2 2 2
1 1 1 1A x y δ= + − and 2 2 2

2 2 2 2A x y δ= + − , 1 1t cδ =  

and 21 2t cδ = , c is the propagation velocity, and t1 
and t2 are the time differences between sensor S0-S1 

and S0-S2 respectively. For the angle θ,  

cos( ) Kθ ϕ− = ,  (15) 

where  

( )2 1 1 2 /K A A Bδ δ⎡ ⎤= −⎣ ⎦   (16) 

( ) ( )
1

22 2
1 2 2 1 1 2 2 1B A x A x A y A y⎡ ⎤= − + −⎢ ⎥⎣ ⎦

  (17) 

and 
( ) ( )1 2 2 1 1 2 2 1tan /A y A y A x A xϕ ⎡ ⎤= − −⎣ ⎦   (18) 

 

 
 

Fig. 4. Comparison between the simulated waveform using SDPT and measured waveform. 
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Thus, the quantities to be extracted from the waves 
are the time differences between the sensors and 
group velocity. Therefore, for the estimation of their 
radii, the propagation velocity also is required. For the 
dispersive wave, it was not easy to measure the group 
velocity using the traditional method [11]. After the 
time-frequency method is introduced, the measure-
ment of group velocity becomes easy and the method 
becomes very familiar [6, 22]. According to previous 
research, the arriving time of Lamb modes is deter-
mined by a function of frequency from the corre-
sponding peak in the time-frequency domain. The 
group velocity dispersion is the calculated by using 
the measured peak times as a function of frequency 
for the different modes, together with the known 
propagation distance. In order to estimate the arriving 
time and group velocity, the CHOFT for the filtered 
measurement waveforms as shown in Fig 4 is calcu-
lated and its image is plotted as shown in Fig. 6, re-
spectively. The dotted line in the middle part is the 
peak line in CHOFT. Peak lines in Fig. 6 are selected 
and are plotted as shown in Fig. 7(a). Using these 
peak lines, the group velocity is calculated by divid-

ing the known distance. The calculated group velocity 
is plotted as shown in Fig. 7(b). Relative S20 means 
the group velocity using relative time difference be-
tween sensor S2 and S0. Relative S21 means the group 
velocity using relative time difference between sensor 
S2 and S1. Average group velocity is the mean value 
of S20 and S21. The group velocities obtained by 
using different arriving times are very similar to the 
theoretical group velocity, which is calculated theo-
retically as shown in Fig. 8. With the group velocity 
and time difference, the location of impact load is 
estimated. Fig. 9 shows the estimated location of im-
pact load using a group velocity of 2kHz as shown in 
Fig. 7(b). Fig. 10 shows the estimated location of 
sources using measured group velocity and theoretical 
group velocity. Fig. 10(a) shows the location of 
source, and Fig. 10(b) shows the distance error. Ac-
cording to these results, the estimation using the 
measured group velocity is better than that using 
theoretical group velocity. To identify the source 
location, the waveform of low frequency is used be-
cause the measured signal has reflection effect at high 
frequency and sampling time is 50kHz. For the identi-  

 
 

Fig. 6. CHOFT for the filtered measurement waveform (a) Sensor S2 (b) Sensor S0 (c) Sensor S1. 
 

        
                                                                (a)                                                                                 (b) 
 
Fig. 7. Arriving time difference for the waveform measured by the sensor S0, S1 and S2 (a) Peak line obtained from image analy-
sis using CHOFT (b) Group velocity for dispersive wave. 
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Fig. 8. Comparison of propagation wave velocity for a flexi-
ble wave in an aluminum plate. 

 

 
 
Fig. 9. Estimation of source location using measured group 
velocity at 2 kHz. 

 

 
 
Fig. 10. Comparison between estimation of source location 
using the measured group velocity and estimation of source 
location using theoretical group velocity. (a) Distance from 
true source: (d) Distance error: (+) Using theoretical group 
velocity ( ) Using measured group velocity. 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 11. CHOFT for the waveform simulated by the approxi-
mated SDPT (a) Position at sensor S2 (b) Position at sensor S0 
(c) Position at sensor S1. 
 
fication of location source at high frequency, the 
simulated signal can be used. The impact load is a 
delta function δ (t). The spectrum of force is unity at 
the whole frequency. The band pass filter from 10kHz 
to 200kHz is used for this analysis. Fig. 11 shows the 
CHOFT for the simulated waveform using the ap-
proximate SPDT. In the image of CHOFT, the disper-
sion of only A0 mode is clear. Fig. 12(a) is the peak 
line obtained from image of three CHOFT as shown 
in Fig. 11. It gives the information on arriving time 
difference and group velocity. From 10kHz to 70kHz, 
the group velocity is overestimated compared to the 
theoretical group velocity. Using the group velocity at 
50kHz, the source location is estimated and plotted as  
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(a) 

 

(b) 
 
Fig. 12. Arriving time difference for the waveform simulated 
by the approximated SDPT (a) Peak line obtained from image 
analysis using CHOFT (b) Group velocity for dispersive 
wave. 
 
 

 
 
Fig. 13. Estimation of source location using group velocity at 
2kHz for the simulated waveform obtained by the approxi-
mated SDPT. 

shown in Fig. 13. Fig. 14 shows the estimated loca-
tion of sources using measured group velocity and 
theoretical group velocity. Fig. 14(a) shows the loca-
tion of source and Fig. 14(b) shows the distance error. 
The distance error is very small and the estimation of 
location is excellent. Fig. 15 shows the CHOFT for 
the simulated waveform using the approximate SPDT. 
Fig. 16(a) shows the peak lines obtained from image 
of three CHOFT as shown in Fig. 15. It gives the 
information arriving time difference and group veloc-
ity. From 10kHz to 70kHz, the group velocity is al-
most the same as the theoretical group velocity. Using 
the group velocity at 50kHz, the location of the 
source is estimated and plotted as shown in Fig. 17. It 
is much closer to the true position. Fig. 18 shows the 
estimated location of sources using measured group 
velocity and theoretical group velocity. Fig. 18(a) 
shows the location of source and Fig. 18(c) shows the 
distance error. The distance error estimated by using 
exact theory is much smaller than the distance error 
estimated by approximated SPDT. From 10 kHz to 
70kHz because at high frequency, the group velocity 
waveform simulated by the approximated SPDT is 
overestimated. Fig. 19 shows this overestimation 
throughout the comparison of the waveform at high 
frequency obtained by using the approximate SPDT 
and that by using exact solution, whilst at low fre-
quency this overestimation does not appear through-
out comparison of the waveform obtained by using  

 
 

 
 
Fig. 14. Estimation of source location and distance error 
using the group velocity for the simulated waveform obtained 
by the approximated SDPT (a) Distance from true source (b) 
Distance error. 
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Fig. 17. Estimation of source location using group velocity at 
50kHz for the simulated waveform obtained by the exact 
theory. 
 

 

 

Fig. 18. Estimation of source location and distance error 
using the group velocity for the simulated waveform obtained 
by the exact theory. (a) Distance from true source (b) Dis-
tance error: (+) Using exact solution ( ) Using approximated 
SDPT. 
 

  

                                   (a)                                                                (b)                                                                (c) 
 
Fig. 15. CHOFT for the waveform simulated by the exact theory (a) Position at sensor S2 (b) Position at sensor S0 (c) Position at 
sensor S1. 
 
 

      

                                                            (a)                                                                                    (b) 
 
Fig. 16. Arriving time difference for the waveform simulated by the exact theory (a) Peak line obtained from image analysis 
using CHOFT (b) Group velocity for dispersive wave. 
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Fig. 19. The simulated waveforms by using the approximated 
SPDT at high frequency between 10kHz to 200kHz (a) Force 
f(t) = δ(t) (b) Waveform at Sensor S2 (c) Waveform at Sensor 
S0 (d) Waveform at Sensor S1. 

 

 
 

Fig. 20. The simulated waveforms by using the approximated 
SPDT at low frequency between 2kHz to 4kHz (a) Measured 
force (b) Waveform at Sensor S2 (c) Waveform at Sensor S0 
(d) Waveform at Sensor S1. 
 
the approximate SPDT and that by using exact solu-
tion as shown in Fig. 20. At very high frequency over 
70kHz, because the other lamb modes exist except A0 
mode, the method using exact solution is not a good 
estimator for the location of impact load because of 
the effect of the other lamb modes. However, it is a 
very good estimator for the location of impact load 
when the group velocity and arriving time difference 
at high frequency obtained by using the approximate 
SPDT are applied to the estimation of impact load. 
 

5. Determination of impact load  

As indicated earlier, the time dependence of the 
impact load can be recovered by deconvolving the 

waveforms measured at each sensor with the Green’s 
functions. The theoretical Green’s functions are the 
normal components of the displacement at the sensor 
locations due to a normal concentrated force of time 
dependence δ (t) at the impact location. They can be 
obtained from the exact formulation or the approxi-
mate SDPT using the procedure described in Ref. 
[26]. Since the accelerations are measured in the ex-
periments, they are obtained from the displacements 
through careful double differentiations of the dis-
placements. The time histories of these Green’s func-
tions using accelerations are plotted in Fig. 21. Since 
the measured accelerations include the waves re-
flected from the edges of the plate, while the calcu-
lated Green’s functions are for a plate of infinite lat-
eral dimensions, the time duration of the measured 
response used for the estimation the time history of 
impact load is selected to eliminate these reflections. 
In this study, 0.6ms is selected as the time duration 
because the propagation energy of the direct wave-
form is concentrated in that range as shown in Fig. 21. 
The reflected part in the measured is replaced by zero 
padding. The time history of the estimated impact 
load is compared with that of true impact in Fig. 22. 
The figures in the top row of Fig. 23 show the com-
parison between the measured impact load and the 
estimated impact load, while those in the bottom row 
show their Fourier transforms. According to these 
results, the impact load is very well estimated by us-
ing the impulse response at S2, although there is some 
error due to the error in the estimated location. The 
estimations of the impact load using the impulse re-
sponse at S0 and S1 also have some errors. 
 
6. Conclusions 

The location and time history of an impact load on 
a thick aluminum plate is identified through the use of 
the time-frequency method and deconvolution with 
the theoretical Green’s function. An instrumented 
impact hammer is used as the application of the im-
pact load on the plate surface and the waves gener-
ated by the load are recorded by three accelerometers 
located on the same surface. The location of the im-
pact load is determined from the arrival time and 
group velocity of the waves by using the time-
frequency analysis. The CHOTF is examined for 
simulated as well as measured waveform signals. It is 
found that the CHOTF is effective in detecting dis-
persive waves. The CHOFT is applied to the meas-



 S.-J. Kim and S.-K. Lee / Journal of Mechanical Science and Technology 22 (2008) 1359~1373 1371 
 

ured and simulated waveform signals at three sensors 
due to the impact load. The location of the impact 
load is effectively estimated by using this arrival time 
and group velocity of the waves. The time history of 
the impact load is recovered by deconvolving the 
waveforms measured at three sensors with the calcu-
lated Green’ functions. The estimated time history of 
the impact load compares well with that of the true 
impact if minor deviations in the estimated source 
location and the presence of reflected waves in the 
measured signal are discounted. 
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